Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Chemosphere ; 355: 141792, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556177

RESUMEN

A rapid and efficient method for the simultaneous monitoring and recovery of Auramine O (AO) and Methylene Blue (MB) dyes from water samples is presented. This method, named ultrasound-assisted dispersive-magnetic nanocomposites-solid-phase microextraction (UA-DMN-µSPE), utilizes NiCoMn/Fe3O4@C composite sorbents. Response surface methodology (RSM) combined with artificial neural networks (ANN) and generalized regression artificial neural network (GRNN) under central composite design (CCD) was employed to optimize various parameters for efficient extraction, followed by further refinement using desirability function analysis (DFA) and genetic algorithms (GA). Under optimized conditions, the method achieved exceptional recovery rates (99.5 ± 1.2% for AO and 99.8 ± 1.1% for MB) with acetone as the eluent. Additionally, a high preconcentration factor of 45.50 and 47.30 for AO and MB, respectively, was obtained. Low detection limits of 0.45 ng mL⁻1 (AO) and 1.80 ng mL⁻1 (MB) were achieved with wide linear response ranges (5-1000 and 5-2000 ng mL⁻1 for AO and MB, respectively). The method exhibited good stability with RSDs below 3% for five recycling runs, and minimal interference from various ions was observed. This UA-DMN-µSPE-UV/Vis method offers significant advantages in terms of efficiency, preconcentration, and detection limits, making it a valuable tool for the analysis of AO and MB in water samples.


Asunto(s)
Benzofenoneido , Nanocompuestos , Azul de Metileno , Agua , Fenómenos Magnéticos , Límite de Detección , Extracción en Fase Sólida
2.
J Environ Manage ; 318: 115586, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35753126

RESUMEN

Ameliorative effects of sheep slaughterhouse waste-derived soil amendments (struvite, blood meal, bone meal) were explored and quantified by a series of comparative greenhouse trials. A scoring matrix system was developed for 25 different test plants using 300 agricultural measurements obtained for three basic growth parameters (fresh-dry plant weights and plant heights) and four different fertilizer sources including solid vermicompost. More than 70% of NH4+-N recovery from sheep slaughterhouse wastewater was achieved using a chemical combination of MgCl2.6H2O + NaH2PO4.2H2O, a molar ratio of Mg2+:NH4+-N:PO43-P = 1.2:1:1, a reaction pH of 9.0, an initial NH4+-N concentration of 240 mg/L, and a reaction time of 15 min. According to SEM micrographs, surface morphology of struvite exhibited a highly porous structure composed of irregularly shaped crystals of various sizes (11.34-79.38 µm). FTIR spectroscopy verified the active functional groups on the proximity of all fertilizer sources within the spectral range of 500-3900 cm-1. TGA-DTG-DSC thermograms of struvite revealed that the mass loss occurred in two temperature regions and reached a maximum mass loss rate of 1.63%/min at 317 °C. The average percentages of increase (57.55-100.62%) and performance points (69-79) corroborated that the fertility value of struvite ranked first on average in cultivation of the analyzed plant species. Findings of this agro-valorization study confirmed that sheep slaughterhouse waste-derived fertilizers could be a beneficial way to promote bio-waste management and environmentally friendly agriculture.


Asunto(s)
Fertilizantes , Suelo , Mataderos , Animales , Fertilizantes/análisis , Compuestos de Magnesio/química , Fosfatos/química , Fósforo , Ovinos , Estruvita/química , Aguas Residuales/química
3.
J Environ Manage ; 306: 114464, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35026713

RESUMEN

The present analysis was conducted as the first research to assess the techno-economic viability of the value-added by-products (struvite, blood meal, bone meal, and raw sheepskin) from a medium-scale sheep slaughterhouse facility with a slaughtering capacity of 300 sheep per day. For this aim, a comparative technical and economic feasibility analysis was performed to assess the synergistic use of slaughterhouse-oriented rendering wastes and struvite recovery from real sheep abattoir effluent within the framework of detailed cost breakdown, break-even point, and payback period analyses. The experimental findings clearly showed that under the optimal conditions (chemical combination of MgCl2.6H2O + NaH2PO4.2H2O, a molar ratio of Mg2+:NH4+-N:PO43--P = 1.2:1:1, a reaction pH of 9.0, an initial ammonium concentration of 240 mg NH4+-N/L, and a reaction time of 15 min), struvite precipitation could effectively remove about 73%, 64%, 59%, and 82% of NH4+-N, TCOD, SCOD, and color, respectively, from the real sheep slaughterhouse waste stream. Based on various up-to-date techno-economic items considered within the break-even point analysis, the sheep slaughterhouse facility was estimated to achieve the targeted net income (€100/day) for any selling prices of €1041.30/ton, €640.05/ton, €263.72/ton, and €1.012/hide, respectively, for struvite, blood meal, bone meal, and raw sheepskin. Steel construction and chemicals were determined as the most costly components for CAPEX (capital expenditures) and OPEX (operating expenditures), respectively, and selling prices of bone meal and raw sheepskin were found to be the most critical income items on the profitability of the slaughterhouse facility. Co-monetary assessment of the struvite process and valorized compounds corroborated the economic viability of the proposed project with the payback periods of about 6.3 and 5.5 years, respectively, for the current market and the profit-oriented conditions without subsidy. The findings of this feasibility analysis, as the first of its own, could be used as guideline for simplifying the decision-making with regards to the feasibility of similar facilities and commercialization of profitable by-products.


Asunto(s)
Compuestos de Magnesio , Eliminación de Residuos Líquidos , Mataderos , Animales , Precipitación Química , Fosfatos , Fósforo , Ovinos , Estruvita , Aguas Residuales
4.
Waste Manag ; 119: 356-364, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33186829

RESUMEN

Sustainable development goals imply environmentally sound management of all wastes to minimize the waste generation through prevention, reduction, recycling, and reuse. In particular, the poultry industry produces nutrient-rich waste that requires proper management.Additionally, the recycling of bio-wastes in agricultural lands is still a key technology for the sustainable use of nutrients as a renewable fertilizer. Currently, there are very few studies on the utilization of agro-industrial bio-wastes, such as poultry abattoir sludge (PAS), for crop cultivation in soils containing low organic matter and high pH. In this context, it is necessary to make a more particular assessment of poultry industry-oriented and locally available nutrient-rich organic wastes for nodulation, physiological adaptation, and crop yield. Considering the scarcity of the literature in this field, the present study aimed to fulfill the apparent gap by focusing on the applicability of recycled PAS to low fertility soil in the growth of chickpea selected as a model legume, thereby contributing to the development of an agricultural and sustainable industrial management strategy for the relevant sectors. In this study, leaf chlorophyll content and nodule color were also investigated by the image analysis methodology to describe the effects of bio-waste on closing chickpea yield gap in a marginal land with high soil pH and low organic matter. Two-year consecutive field experiments were carried out to explore the effect of the PAS with the application rates of 25 kg N ha-1 (T2), 50 kg N ha-1 (T3), and 100 kg N ha-1 (T4) along with unamended (T0) and fertilized control (T1). The results indicated that the PAS treatments significantly differed in chlorophyll content, nodulation parameters, and biomass and grain yields. The chlorophyll content was correlated (r = 0.910) with the red color value (RGB color model) of nodule image analysis in the response to bio-waste. Based on the two-year average, it was concluded that chickpea yield could be increased 45% by amending with the PAS (T3). The present study clearly demonstrated that the image analysis could be a useful digital tool for the evaluation of chlorophyll content, nitrogen fixation efficiency, and forecasting biomass and grain yields of chickpea. The results also confirmed that the PAS application to low fertility soil could prominently contribute to establish sustainable waste management and crop production alternatives for closing chickpea yield gap.


Asunto(s)
Cicer , Administración de Residuos , Agricultura , Animales , Fertilizantes/análisis , Reciclaje , Suelo
5.
Environ Technol ; 41(2): 153-170, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29932016

RESUMEN

Sustainable uses of the struvite (magnesium ammonium phosphate hexahydrate, MgNH4PO4·6H2O, MAP) recovered from the synthetic wastewater, as a high-quality slow-release fertilizer for the growth of nine medicinal plants and a fire-retardant barrier on the flammability of cotton fabric and wooden plate, were explored in this study. The previous experimental results demonstrated that under the optimal conditions, about 98.7% of [Formula: see text] (initial [Formula: see text] = 1000 mg/L) could be effectively and successfully recovered from simulated wastewater in the form of MAP precipitate. Rates of increase in total fresh weights, total dry weights, and fresh heights of plants grown in soil fertilized with the struvite were determined as 67%, 52%, and 12% for valerian; 121%, 75%, and 18% for cucumber; 421%, 260%, and 47% for dill; 314%, 318%, and 27% for coriander; 432%, 566%, and 30% for tomato; 285%, 683%, and 26% for parsley; 200%, 225%, and 9% for basil; 857%, 656%, and 92% for rocket; and 146%, 115%, and 28% for cress, respectively, compared to the control pots. The microstructure, elemental composition, surface area, thermal behaviour, and functional groups of the grown crystals were characterized using SEM, EDS, BET, TGA-DTG-DSC, and FTIR analyses, respectively. Flammability tests and thermal analyses concluded that the dried and crumbled/implanted form of struvite used as a fire-retardant barrier demonstrated a remarkable flame-resistant behaviour for both cotton fabric and wooden plate. Findings of this experimental study clearly corroborated the versatility of struvite as non-polluting and environmentally friendly clean product for the sustainable usage in different fields.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Fertilizantes , Compuestos de Magnesio , Fosfatos , Estruvita
6.
Environ Technol ; 41(4): 466-477, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30016201

RESUMEN

Commercial turfgrass cultivation is one of the main ornamental industries world-wide; however, successive turfgrass sod cutting from the same site removes surface soil, leading to a decline in soil organic matter, impairment of soil fertility and degradation of environment. The present study was aimed to investigate the applicability of poultry abattoir sludge compost (PASC) and biochar (BC) on the establishment of turfgrass by evaluating plant growth performance and mitigation of soil loss by organic waste amendments. The experimental study was designed on the soil which had originally low-organic matter content and previously used as a turfgrass sod harvested site in a sandy loam soil. Incorporation of PASC to soil improved the physicochemical properties in terms of bulk density (BD), water holding capacity (WHC), cation exchange capacity (CEC), pH, total nitrogen, total organic carbon (TOC), and organic matter (OM) by 37 (±2)%, 45 (±3)%, 55 (±3)%, 21 (±2)%, 48 (±2)%, 90 (±10)%, and 96 (±4)%, respectively. PASC-amended treatments enhanced the turfgrass growth rate more than the BC due to its increased nutrient availability. Incorporation of 100 Mg ha-1 (mega gram per hectare) PASC in surface soil with or without BC decreased the mineral soil removal rate by half of the respective soil (control) treatments. The results of the present study confirmed the utilization of PASC and BC as promising agro-industrial-based fertilizers in turfgrass sod production for sustainable soil and nutrient management.


Asunto(s)
Compostaje , Mataderos , Animales , Carbón Orgánico , Fertilizantes , Aves de Corral , Aguas del Alcantarillado , Suelo
7.
J Environ Health Sci Eng ; 17(1): 479-492, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31297221

RESUMEN

BACKGROUND: Azo dyes represent the most commonly used group of dyes in the textile industry. These organic dyes are mainly resistant to biodegradation and may exhibit toxic and carcinogenic properties. The purpose of this study was to investigate the effects of doping zinc oxide (ZnO) nanoparticles (NPs) with transition metals (silver, manganese, and copper) on the photocatalytic efficiency of ZnO NPs in the removal of Direct Blue 15 dye from aqueous environments under ultraviolet (UV) radiation and visible light irradiation. METHODS: One or two metals were used for doping the NPs. In total, seven types of undoped and transition metal-doped NPs were synthesized using the thermal solvent method with ZnO precursors and transition metal salts. The characteristics of the synthesized NPs were determined based on the scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), atomic force microscopy (AFM), and zeta potential measurements. RESULTS: The produced ZnO NPs did not exhibit any particular photocatalytic activities under UV radiation and visible light irradiation. The highest removal efficiency under UV radiation was about 74% in the presence of silver-doped ZnO NPs, while the maximum efficiency under visible light was 70% in the presence of copper-doped ZnO NPs. The lowest removal efficiency was related to pure ZnO, which was 18.4% and 14.6% under UV and visible light irradiation, respectively. Although the efficiency of dye removal under visible light was not high compared to UV radiation, this efficiency was noteworthy in terms of both practical and economic aspects since it was achieved without the presence of ultraviolet radiation. CONCLUSIONS: The synthesis of transition metal-doped ZnO nanophotocatalysts (with one or two metals) under UV radiation or visible light irradiation could be used as an efficient and promising technology for the photocatalytic removal of Direct Blue 15 dye from aqueous environments.

8.
Environ Monit Assess ; 189(5): 235, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28451957

RESUMEN

The relationship between indoor and outdoor particulate air pollution was investigated at an urban background site on the Payambar Azam Campus of Mazandaran University of Medical Sciences in Sari, Northern Iran. The concentration of particulate matter sized with a diameter less than 1 µm (PM1.0), 2.5 µm (PM2.5), and 10 µm (PM10) was evaluated at 5 outdoor and 12 indoor locations. Indoor sites included classrooms, corridors, and office sites in four university buildings. Outdoor PM concentrations were characterized at five locations around the university campus. Indoor and outdoor PM measurements (1-min resolution) were conducted in parallel during weekday mornings and afternoons. No difference found between indoor PM10 (50.1 ± 32.1 µg/m3) and outdoor PM10 concentrations (46.5 ± 26.0 µg/m3), indoor PM2.5 (22.6 ± 17.4 µg/m3) and outdoor PM2.5 concentration (22.2 ± 15.4 µg/m3), or indoor PM1.0 (14.5 ± 13.4 µg/m3) and outdoor mean PM1.0 concentrations (14.2 ± 12.3 µg/m3). Despite these similar concentrations, no correlations were found between outdoor and indoor PM levels. The present findings are not only of importance for the potential health effects of particulate air pollution on people who spend their daytime over a period of several hours in closed and confined spaces located at a university campus but also can inform regulatory about the improvement of indoor air quality, especially in developing countries.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Países en Desarrollo , Humanos , Irán , Tamaño de la Partícula , Ciencia , Universidades
9.
J Environ Health Sci Eng ; 11(1): 10, 2013 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24499570

RESUMEN

The aim of this study was to investigate the performance of a two-stage fluidized bed reactor (FBR) system for the post-treatment of secondary wastewater treatment plant effluents (Shahrak Gharb, Tehran, Iran). The proposed treatment scheme was evaluated using pilot-scale reactors (106-L of capacity) filled with PVC as the fluidized bed (first stage) and gravel for the filtration purpose (second stage). Aluminum sulfate (30 mg/L) and chlorine (1 mg/L) were used for the coagulation and disinfection of the effluent, respectively. To monitor the performance of the FBR system, variation of several parameters (biochemical oxygen demand (BOD5), chemical oxygen demand (COD), turbidity, total phosphorous, total coliform and fecal coliform) were monitored in the effluent wastewater samples. The results showed that the proposed system could effectively reduce BOD5 and COD below 1.95 and 4.06 mg/L, respectively. Turbidity of the effluent could be achieved below 0.75 NTU, which was lower than those reported for the disinfection purpose. The total phosphorus was reduced to 0.52 mg/L, which was near the present phosphorous standard for the prevention of eutrophication process. Depending on both microorganism concentration and applied surface loading rates (5-10 m/h), about 35 to 75% and 67 to 97% of coliform were removed without and with the chlorine addition, respectively. Findings of this study clearly confirmed the efficiency of the FBR system for the post-treatment of the secondary wastewater treatment plant effluents without any solid problem during the chlorination.

10.
Environ Sci Pollut Res Int ; 20(6): 4235-53, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23247523

RESUMEN

Three multiple input and multiple output-type fuzzy-logic-based models were developed as an artificial intelligence-based approach to model a novel integrated process (UF-IER-EDBM-FO) consisted of ultrafiltration (UF), ion exchange resins (IER), electrodialysis with bipolar membrane (EDBM), and Fenton's oxidation (FO) units treating young, middle-aged, and stabilized landfill leachates. The FO unit was considered as the key process for implementation of the proposed modeling scheme. Four input components such as H(2)O(2)/chemical oxygen demand ratio, H(2)O(2)/Fe(2+) ratio, reaction pH, and reaction time were fuzzified in a Mamdani-type fuzzy inference system to predict the removal efficiencies of chemical oxygen demand, total organic carbon, color, and ammonia nitrogen. A total of 200 rules in the IF-THEN format were established within the framework of a graphical user interface for each fuzzy-logic model. The product (prod) and the center of gravity (centroid) methods were performed as the inference operator and defuzzification methods, respectively, for the proposed prognostic models. Fuzzy-logic predicted results were compared to the outputs of multiple regression models by means of various descriptive statistical indicators, and the proposed methodology was tested against the experimental data. The testing results clearly revealed that the proposed prognostic models showed a superior predictive performance with very high determination coefficients (R (2)) between 0.930 and 0.991. This study indicated a simple means of modeling and potential of a knowledge-based approach for capturing complicated inter-relationships in a highly non-linear problem. Clearly, it was shown that the proposed prognostic models provided a well-suited and cost-effective method to predict removal efficiencies of wastewater parameters prior to discharge to receiving streams.


Asunto(s)
Lógica Difusa , Modelos Químicos , Oxidación-Reducción , Eliminación de Residuos , Amoníaco/aislamiento & purificación , Inteligencia Artificial , Análisis de la Demanda Biológica de Oxígeno , Peróxido de Hidrógeno , Concentración de Iones de Hidrógeno , Resinas de Intercambio Iónico , Reproducibilidad de los Resultados , Eliminación de Residuos Líquidos/métodos
11.
Bioresour Technol ; 118: 89-101, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22705511

RESUMEN

An integrated multi-objective optimization approach within the framework of nonlinear regression-based kinetic modeling and desirability function was proposed to optimize an up-flow anaerobic sludge blanket (UASB) reactor treating poultry manure wastewater (PMW). Chen-Hashimoto and modified Stover-Kincannon models were applied to the UASB reactor for determination of bio-kinetic coefficients. A new empirical formulation of volumetric organic loading rate was derived for the first time for PMW to estimate the dimensionless kinetic parameter (K) in the Chen-Hashimoto model. Maximum substrate utilization rate constant and saturation constant were predicted as 11.83 g COD/L/day and 13.02 g COD/L/day, respectively, for the modified Stover-Kincannon model. Based on four process-related variables, three objective functions including a detailed bio-economic model were derived and optimized by using a LOQO/AMPL algorithm, with a maximum overall desirability of 0.896. The proposed optimization scheme demonstrated a useful tool for the UASB reactor to optimize several responses simultaneously.


Asunto(s)
Reactores Biológicos , Estiércol/análisis , Modelos Teóricos , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos , Purificación del Agua/instrumentación , Purificación del Agua/métodos , Anaerobiosis , Animales , Biodegradación Ambiental , Reactores Biológicos/economía , Cinética , Metano/análisis , Aves de Corral , Análisis de Regresión , Eliminación de Residuos Líquidos/economía , Purificación del Agua/economía
12.
Environ Sci Pollut Res Int ; 19(6): 2227-37, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22234852

RESUMEN

PURPOSE: A multiple inputs and multiple outputs (MIMO) fuzzy-logic-based model was proposed to estimate color and chemical oxygen demand (COD) removal efficiencies in the post-treatment of anaerobically pretreated poultry manure wastewater effluent using Fenton's oxidation process. Three main input variables including initial pH, Fe+2, and H2O2 dosages were fuzzified in a new numerical modeling scheme by the use of an artificial intelligence-based approach. MATERIALS AND METHODS: Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 70 rules in the IF-THEN format. The product (prod) and the center of gravity (centroid) methods were applied as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two first-order polynomial regression models derived in the scope of this study. Estimated results were also compared to the multiple regression approach by means of various descriptive statistical indicators, such as root mean-squared error, index of agreement, fractional variance, proportion of systematic error, etc. RESULTS AND DISCUSSION: Results of the statistical analysis clearly revealed that, compared to conventional regression models, the proposed MIMO fuzzy-logic model produced very smaller deviations and demonstrated a superior predictive performance on forecasting of color and COD removal efficiencies with satisfactory determination coefficients over 0.98. CONCLUSIONS: Due to high capability of the fuzzy-logic methodology in capturing the non-linear interactions, it was demonstrated that a complex dynamic system, such as Fenton's oxidation, could be easily modeled.


Asunto(s)
Estiércol , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Animales , Lógica Difusa , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Hierro/química , Modelos Teóricos , Aves de Corral
13.
Waste Manag ; 31(11): 2263-74, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21745733

RESUMEN

One-dimensional (1D) advection-dispersion transport modeling was conducted as a conceptual approach for the estimation of the transport parameters of fourteen different phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and three different inorganic contaminants (Cu, Zn, Fe) migrating downward through the several liner systems. Four identical pilot-scale landfill reactors (0.25 m3) with different composite liners (R1: 0.10+0.10 m of compacted clay liner (CCL), L(e) = 0.20 m, k(e) = 1 × 10(-8) m/s, R2: 0.002-m-thick damaged high-density polyethylene (HDPE) geomembrane overlying 0.10+0.10 m of CCL, L(e) = 0.20 m, k(e) = 1 × 10(-8) m/s, R3: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick bentonite layer encapsulated between 0.10+0.10 m CCL, L(e) = 0.22 m, k(e) = 1 × 10(-8) m/s, R4: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick zeolite layer encapsulated between 0.10+0.10 m CCL, L(e) = 0.22 m, k(e) = 4.24 × 10(-7) m/s) were simultaneously run for a period of about 540 days to investigate the nature of diffusive and advective transport of the selected organic and inorganic contaminants. The results of 1D transport model showed that the highest molecular diffusion coefficients, ranging from 4.77×10(-10) to 10.67 × 10(-10)m2/s, were estimated for phenol (R4), 2-MP (R1), 2,4-DNP (R2), 2,4-DCP (R1), 2,6-DCP (R2), 2,4,5-TCP (R2) and 2,3,4,6-TeCP (R1). For all reactors, dispersion coefficients of Cu, ranging from 3.47 × 10(-6) m(2)/s to 5.37 × 10(-2) m2/s, was determined to be higher than others obtained for Zn and Fe. Average molecular diffusion coefficients of phenolic compounds were estimated to be about 5.64 × 10(-10) m2/s, 5.37 × 10(-10) m2/s, 2.69 × 10(-10) m2/s and 3.29 × 10(-10) m2/s for R1, R2, R3 and R4 systems, respectively. The findings of this study clearly indicated that about 35-50% of transport of phenolic compounds to the groundwater is believed to be prevented with the use of zeolite and bentonite materials in landfill liner systems.


Asunto(s)
Metales Pesados/análisis , Fenoles/análisis , Eliminación de Residuos/métodos , Administración de Residuos/métodos , Contaminantes Químicos del Agua/análisis , Cinética , Modelos Teóricos , Contaminantes Químicos del Agua/química
14.
Sci Total Environ ; 409(17): 3183-96, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21621822

RESUMEN

Four identical pilot-scale landfill reactors with different alternative composite liners were simultaneously operated for a period of about 540 days to investigate and to simulate the migration behaviors of phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and heavy metals (Pb, Cu, Zn, Cr, Cd, Ni) from landfill leachate to the groundwater. Alternative landfill liners of four reactors consist of R1: Compacted clay liner (10 cm+10 cm, k=10(-8)m/sn), R2: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm+10 cm, k=10⁻8 m/sn), R3: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm, k=10⁻8 m/sn)+bentonite liner (2 cm)+compacted clay liner (10 cm, k=10⁻8 m/sn), and R4: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm, k=10⁻8 m/sn)+zeolite liner (2 cm)+compacted clay liner (10 cm, k=10⁻8 m/sn). Wastes representing Istanbul municipal solid wastes were disposed in the reactors. To represent bioreactor landfills, reactors were operated by leachate recirculation. To monitor and control anaerobic degradation in the reactors, variations of conventional parameters (pH, alkalinity, chloride, conductivity, COD, TOC, TKN, ammonia and alcaly metals) were also investigated in landfill leachate samples. The results of this study showed that about 35-50% of migration of organic contaminants (phenolic compounds) and 55-100% of migration of inorganic contaminants (heavy metals) to the model groundwater could be effectively reduced with the use of bentonite and zeolite materials in landfill liner systems. Although leachate contaminants can reach to the groundwater in trace concentrations, findings of this study concluded that the release of these compounds from landfill leachate to the groundwater may potentially be of an important environmental concern based on the experimental findings.


Asunto(s)
Eliminación de Residuos/métodos , Contaminantes Químicos del Agua/análisis , Silicatos de Aluminio/química , Anaerobiosis , Biodegradación Ambiental , Biotransformación , Cloruros/análisis , Clorofenoles/análisis , Arcilla , Cresoles/análisis , Agua Dulce/química , Cinética , Metales Pesados/análisis , Modelos Químicos , Nitrógeno/análisis , Nitrofenoles/análisis , Fenoles/análisis , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo
15.
Bioprocess Biosyst Eng ; 34(4): 389-401, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21061134

RESUMEN

Effect of extracellular enzyme activity on digestion performance of up-flow anaerobic sludge blanket (UASB) reactor was investigated for enhancement of anaerobic treatability of municipal wastewater. Two identical UASB reactors (9 L), namely Reactor-A (without enzyme addition) and Reactor-B (with enzyme addition),were simultaneously operated at mesophilic conditions (32 ± 2°C) with a hydraulic retention time of 24 h. Preliminary test results showed that the highest total chemical oxygen demand (TCOD) removal were achieved with an extracellular enzyme dosage of 0.2 mL/L. In the activation period of the extracellular enzyme (on days 186-212), while Reactor-A removed up to 69.3% of TCOD and 55.9% of soluble chemical oxygen demand (SCOD), Reactor-B effectively removed up to 81.9% of TCOD and 72.2% of SCOD. The average VFA/alkalinity ratios were determined to be about 0.40 (±0.03) and 0.28 (±0.08) for Reactor-A and Reactor-B, respectively.


Asunto(s)
Enzimas/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Anaerobiosis , Reactores Biológicos , Ciudades , Diseño de Equipo , Concentración de Iones de Hidrógeno , Modelos Estadísticos , Oxígeno/química , Probabilidad , Aguas del Alcantarillado , Temperatura , Factores de Tiempo
16.
Bioprocess Biosyst Eng ; 34(2): 153-62, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20683617

RESUMEN

A kinetic modeling-based study was carried out to evaluate the start-up performance of a 10-L up-flow anaerobic sludge blanket (UASB) reactor treating municipal wastewater under different organic and hydraulic loading conditions. The reactor was operated for 105 days (around 4 months) below 20 °C and with three different hydraulic retention times of 24, 12 and 5 h. Imposed volumetric organic loading rates (OLR) ranged from 0.57 (±0.05) to 11.78 (±0.85) kg TCOD/m(3)-day. Although relatively high incoming volumetric OLR values were employed to the system, the UASB reactor demonstrated a favorable performance on the anaerobic treatability of municipal wastewater, and no process failure was recorded in the start-up stage. On the basis of experimental results, the modified Stover-Kincannon model was successfully applied to define the start-up kinetics with a very high value of the correlation coefficient (R = 0.9729). Maximum substrate utilization rate constant and saturation constant of the modified Stover-Kincannon model were determined as U (max) = 1.996 g/L-day and K (B) = 1.536 g/L-day, respectively.


Asunto(s)
Reactores Biológicos , Modelos Teóricos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Anaerobiosis , Frío , Cinética , Eliminación de Residuos Líquidos/instrumentación , Purificación del Agua/instrumentación
17.
Mar Pollut Bull ; 60(10): 1708-17, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20630544

RESUMEN

The potential genotoxic activity in the surface waters of the Golden Horn Estuary was statistically evaluated utilizing a combination of appropriate parametric and non-parametric tests. The genotoxic activities that were associated with the water samples were determined by the SOS chromotest microplate assay. This assay utilizes ß-galactosidase activity, alkaline phosphatase activity, and four different solvent controls, to generate reliable results when corrected induction factors (CIF) are used as quantitative measurements of genotoxic activity. The CIF values were obtained from a total of 384 different genotoxic experiments that were grouped into subsets according to the respective seasons and the selected sampling locations. A total of 160 subsets were statistically compared to assess any possible differences between the pairs of groups, with 95% confidence limits. The findings of this study clearly indicate that some seasonal variations exist in the CIF values at several sampling sites. However, no potentially hazardous impact to the aquatic environment was found in the estuarine system.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/métodos , Pruebas de Mutagenicidad , Agua de Mar/química , Contaminantes Químicos del Agua/toxicidad , Bacterias/genética , Bacterias/metabolismo , Colorimetría , Modelos Estadísticos , Estaciones del Año , Turquía
18.
J Hazard Mater ; 182(1-3): 460-71, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20609515

RESUMEN

A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R(V)), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (+/-3)% and an average volumetric TCOD removal rate of 6.87 (+/-3.93) kg TCOD(removed)/m(3)-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98.


Asunto(s)
Reactores Biológicos , Lógica Difusa , Gases , Residuos Industriales , Metano/biosíntesis , Modelos Teóricos , Melaza , Contaminantes del Agua/aislamiento & purificación , Concentración de Iones de Hidrógeno , Proyectos Piloto
19.
J Hazard Mater ; 171(1-3): 551-62, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19577844

RESUMEN

A three factor, three-level Box-Behnken experimental design combining with response surface modeling (RSM) and quadratic programming (QP) was employed for maximizing Pb(II) removal from aqueous solution by Antep pistachio (Pistacia vera L.) shells based on 17 different experimental data obtained in a lab-scale batch study. Three independent variables (initial pH of solution (pH(0)) ranging from 2.0 to 5.5, initial concentration of Pb(II) ions (C(0)) ranging from 5 to 50 ppm, and contact time (t(C)) ranging from 5 to 120 min) were consecutively coded as x(1), x(2) and x(3) at three levels (-1, 0 and 1), and a second-order polynomial regression equation was then derived to predict responses. The significance of independent variables and their interactions were tested by means of the analysis of variance (ANOVA) with 95% confidence limits (alpha=0.05). The standardized effects of the independent variables and their interactions on the dependent variable were also investigated by preparing a Pareto chart. The optimum values of the selected variables were obtained by solving the quadratic regression model, as well as by analysing the response surface contour plots. The optimum coded values of three test variables were computed as x(1)=0.125, x(2)=0.707, and x(3)=0.107 by using a LOQO/AMPL optimization algorithm. The experimental conditions at this global point were determined to be pH(0)=3.97, C(0)=43.4 ppm, and t(C)=68.7 min, and the corresponding Pb(II) removal efficiency was found to be about 100%.


Asunto(s)
Plomo/análisis , Plomo/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Algoritmos , Análisis de Varianza , Biodegradación Ambiental , Concentración de Iones de Hidrógeno , Residuos Industriales , Modelos Estadísticos , Pistacia/metabolismo , Análisis de Regresión , Factores de Tiempo , Eliminación de Residuos Líquidos/métodos , Agua/química , Contaminantes Químicos del Agua/análisis
20.
Waste Manag Res ; 27(1): 3-18, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19220987

RESUMEN

A literature review has been undertaken to investigate the performance of the different anaerobic process configurations and operational conditions used in poultry and livestock waste treatment. The results of the extensive literature review showed that a wide range of different reactor volumes varying from 100 mL to 95 m3 were utilized in the investigation of anaerobic processing of poultry manure. Retention times studied were between 13.2 h and 91 days. Most of studies were carried out under mesophilic conditions maintained between 25 and 35 degrees C. Chemical oxygen demand (COD) removals and organic loading rate (OLR) ranged from 32 to 78%, and from 1.1 to 2.9 kg COD m(-3) day(-1), respectively. Biogas yields were achieved between 180 mL g(-1) COD added and 74 m3 day(-1) for a wide range of different reactor configurations. Up-flow anaerobic sludge blanket (UASB) seems to be a suitable process for the treatment of poultry manure wastewater and the liquid fraction of hen manure, due to its ability to maintain a sufficient amount of active biomass. The literature review showed that various reactor configurations such as fixed-film reactor, attached-film bioreactor, anaerobic rotating biological reactor, batch reactors, downflow anaerobic filter, fixed dome plant, UASB, continuously stirred tank reactor (CSTR), up-flow anaerobic filter (UAF), temperature-phased anaerobic digestion (TPAD), anaerobic hybrid reactor (AHR), and two-stage anaerobic systems are well suited to anaerobic processing of cattle manure. At both mesophilic and thermophilic conditions, high COD removals (87-95%) were achieved for treatment of cattle manure wastewaters. The COD and volatile solids (VS) reductions obtained were 37.9 to 94% and 9.6 to 92%, respectively. During the studies, OLR and retention times ranged between 0.117 and 7.3 g VS L(-1) day(-1) and between 0.5 and 140 days, respectively. In anaerobic processing of cattle manure, methane yields between 48 mmol CH4 L(-1) and 4681.3 m3 CH4 month(- 1) were found for the corresponding reactor volumes of 120 mL and 1300 m3, respectively. In anaerobic processing of swine manure, OLR ranged from 0.9 to 15.42 g VS L(-1) day(- 1) at mesophilic conditions (25-35 degrees C). The reactor volumes varied between 125 mL and 380 L. Temperature and retention times ranged from 25 to 60 degrees C, and 0.9 to 113 days, respectively. COD and VS reductions achieved were between 57 and 78% and between 34.5 and 61%, respectively. Moreover, methane yields were obtained between 22 and 360 mL CH4 g(-1) VS added. The results showed that UASB, anaerobic baffled reactors, CSTR, and anaerobic sequencing batch reactor (ASBR) were successfully utilized in anaerobic processing of swine manure at both mesophilic and thermophilic conditions.


Asunto(s)
Animales Domésticos , Estiércol , Aves de Corral , Administración de Residuos/métodos , Agricultura , Anaerobiosis , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...